Bin Xu
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Academic Titles:Director and Founder, Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province
Gender:Male
Date of Birth:1972-03-04
Alma Mater:Ibaraki University
Education Level:博士研究生
Degree:Doctoral Degree in Engineering
Date of Employment:2016-08-01
School/Department:College of Civil Engineering, Huaqiao University
Business Address:College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, China
E-Mail:
Status:在岗
Other Post:Director and Founder, International Research Center for Safety and Sustainability of Civil Engineering
Administrative Position:Director, Key Laboratory
Discipline:Civil Engineering
Academic Honor:
2008 教育部新世纪优秀人才支持计划
2016 桐江学者
2017 福建省“闽江学者奖励计划”特聘教授
2017 厦门市双百计划
2018 福建省引进高层次人才
Honors and Titles:
2024-09-10 华侨大学师德模范
福建省引进高层次人才(海外B类)
The Second Level Technical Invention Award, Fujian Province Government, China,2018
Overseas High-level Innovative Talents Award, Xiamen City Government, China,2017
Ethics Role Model Award, Hunan University, China,2014
Hits:
Journal:Mechanical Systems and Signal Processing
Abstract:In this paper, a two-dimensional (2D) time domain spectral element method (SEM) is developed for concrete-filled steel tube (CFST) and piezoelectric lead zirconate titanate (PZT) patches coupling system, where the piezoelectric and inverse piezoelectric effect of PZT actuator and sensor and their coupling effect with CFST are considered. The local wave field and the response of the embedded PZT sensor was numerically studied in a substructure of the CFST coupled with PZT patches and surrounded by absorbing layers with increasing damping (ALID) and the performance of the ALID in attenuating wave reflection at boundaries of the coupling substructure model is further investigated. Then, numerical simulation on the effect of interface debonding defect on local wave propagation within the coupling substructure model surrounded by the designed ALID was carried out. By comparing the displacement-based wave fields and the response of the embedded PZT sensor within the substructure, the effect of interface debonding defect on the wave propagation along the steel tube and in the concrete core, and the time history of the response voltage of the embedded PZT sensor is investigated in detail. Numerical results show that interface debonding defects in the substructure leads to changes in the wave propagation path, the local wave field, the time duration of wave travelling to the embedded PZT sensor from the PZT actuator mounted on the surface of the steel tube of CFST, as well as response voltage of the embedded PZT sensor. In addition, PZT sensor measurement is sensitive to the length of interface debonding defects but insensitive to their depth. SEM for the coupling substructure model with ALID instead of the model of whole cross section of CFST provides an efficient way to simulate the local elastic wave propagation for understanding the mechanism of the interface debonding defects detection approach based on wave measurement.
Indexed by:Journal paper
Document Type:J
Volume:146
Page Number:107004
Translation or Not:no
Date of Publication:2021-01-01
Included Journals:SCI
Impact Factor:8.934
First Author:栾乐乐
Co-author:陈洪兵,王海东
Correspondence Author:许斌
Dr. Bin Xu is currently the Minjiang Scholar Professor of Civil Engineering, a professorship appointed by Fujian Provincial Government, at Huaqiao University, Xiamen, China. He currently is the Director and Founder of the Key Laboratory for Intelligent Infrastructure and Monitoring (IIM) of Fujian Province, and the Director and Founder of the International Centre for Safety and Sustainability of Civil Engineering at Huaqiao University.
Before joining Huaqiao University, he was a Lotus Scholar Professor of Civil Engineering (a professorship appointed by Fujian Provincial Government) at Hunan University from 2005 to 2016 and was also the associate dean of the College of Civil Engineering at Hunan University from 2010 to 2016. He was also the Director of the Hunan Provincial Key Lab on Damage Prognosis for Engineering Structures from 2015 to 2016 at Hunan University. He taught and carried out research at the Lyles School of Civil Engineering at Purdue University as a Curtis Visiting Professor appointed by Purdue University in 2014-2015 academic year. He had been invited and financially support by European Commission to work at Sapienza University of Roma in 2010 and hired by University of Western Australia as a Gledden Visiting Senior Fellow from 2007 to 2008. Before starting working in China in 2005, he worked at University of Missouri-Rolla in US as a Post-Doc from 2003 to 2005 and at Ibaraki University in Japan as a Japan Society for the Promotion of Science (JSPS) postdoctoral fellow from 2001 to 2003.
He has been the supervisor of 7 Ph.D., 1 Post-Doc, 4 international visiting students and over 60 MS students. All of his PhD students are working at universities. Dr. Xu has committed to securing competitive external funds to support programs, research, and labs. He has been the PI and Co-PI of 14 competitive government funded research projects including a China- European Commission international collaborative research project, an international collaborative research project between National Natural Science Foundation of China (NSFC) and National Natural Science Foundation (NSF) of US, and a number of NSFC research projects. He is also the recipient of Grant-in-aid of 7 talent programs sponsored by China Ministry of Education (CMoE) and other government agencies.
He also serves on various academic societies as Editor-in-Chief, Executive Editor, Associate Editor, Guest Editor or editorial board member for international journals and professional committees as Standing Committee Member, Executive Member or Committee Members.