• 其他栏目

    许斌

    • 教授 博士生导师 硕士生导师
    • 主要任职:Director and Founder, Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province
    • 性别:男
    • 出生日期:1972-03-04
    • 毕业院校:Ibaraki University
    • 学历:博士研究生
    • 学位:工学博士学位
    • 入职时间:2016-08-01
    • 所在单位:土木工程学院土木工程系
    • 办公地点:College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, China
    • 电子邮箱:
    • 在职信息:在岗
    • 其他任职:Director and Founder, International Research Center for Safety and Sustainability of Civil Engineering
    • 职务:Director, Key Laboratory
    • 学科:土木工程
    • 2008当选:教育部新世纪优秀人才支持计划
    • 2016当选:桐江学者
    • 2017当选:福建省“闽江学者奖励计划”特聘教授
    • 2017当选:厦门市双百计划
    • 2018当选:福建省引进高层次人才
    • 2024-09-10曾获荣誉当选:华侨大学师德模范
    • 福建省引进高层次人才(海外B类)
    • 福建省技术发明奖,2018
    • 厦门市双百计划创新人才,2017
    • 湖南大学师德标兵,2014

    访问量:

    开通时间:..

    最后更新时间:..

    Identification of structural parameters and unknown inputs based on revised observation equation: approach and validation

    点击次数:

    发表刊物:International Journal of Structural Stability and Dynamics

    摘要:The identification of parameters of linear or nonlinear systems under unknown inputs and limited outputs is an important but still challenging topic in the context of structural health monitoring. Time-domain analysis methodologies, such as extend Kalman filter (EKF), have been actively studied and shown to be powerful for parameter identification. However, the conventional EKF is not applicable when the input is unknown or unmeasured. In this paper, by introducing a projection matrix in the observation equation, a time-domain EKF-based approach is proposed for the simultaneous identification of structural parameters and the unknown excitations with limited outputs. A revised version of observation equation is presented. The unknown inputs are identified using the least squares estimation based on the limited observations and the estimated structural parameters at the current time step. Particularly, an analytical recursive solution is derived. The accuracy and effectiveness of the proposed approach is first demonstrated via several numerical examples. Then it was validated by the shaking table tests on a five-story building model for the robustness in application to real structures. The results show that the proposed approach can satisfactorily identify the parameters of linear or nonlinear structures under unknown inputs.

    论文类型:期刊论文

    文献类型:J

    卷号:19

    期号:12

    页面范围:1950156

    是否译文:

    发表时间:2019-12-25

    收录刊物:SCI

    影响因子:2.957

    第一作者:贺佳

    合写作者:张肖雄,许斌