华侨大学官网  English 
范文涛
赞  

教授 硕士生导师  

性别:男

学历:博士研究生毕业

学位:工学博士学位

所在单位:College of Computer Science and Technology

电子邮箱:

手机版

访问量:

最后更新时间:..

个人简介

范文涛 工学博士,教授,加拿大Concordia大学信息系统工程学院(CIISE)兼职教授,IEEE 高级会员,福建省引进高层次人才。分别于2009年和2014年在加拿大Concordia大学获得信息系统安全(Information Systems Security)硕士和电子与计算机工程(Electrical and Computer Engineering)博士学位。在攻读博士期间获得加拿大魁北克省自然与技术研究基金 (FQRNT) 博士研究生奖学金,以及康考迪亚大学工程与计算机科学学院高素质新博士研究生特别奖学金。并于2012年分别获得国际通信和信息技术会议 (ICCIT 2012) ,以及国际多媒体通信、服务与安全会议 (MCSS 2012) 最佳论文奖。博士毕业后曾获得加拿大自然科学与工程研究理事会(NSERC)博士后奖学金。2014年7月起在华侨大学计算机科学与技术学院工作。近年来先后主持国家自然科学基金、福建省自然科学基金等项目,在IEEE Transactions on Neural Networks and Learning Systems,IEEE Transactions on Knowledge and Data Engineering,Pattern Recognition,IJCAI,SIGIR,ICDM,ICASSP等国际期刊和国际会议发表被SCI/EI检索的学术论文100余篇。


研究方向:

人工智能、机器学习、数据挖掘、计算机视觉。


硕士研究生招生:

  1. 招生专业:1)软件工程(学术硕士,一级学科);2)计算机技术(专业硕士)。

  2. 招生要求:对人工智能、机器学习等研究领域感兴趣,勤奋刻苦,具备较强的自学能力和钻研精神,有较好的编程能力(如C++、Python等)。


主持的科研项目:

  1. 国家自然科学基金面上基金项目,61876068,基于非参数概率混合模型的方向数据聚类算法研究,2019/01-2022/12,62万元。

  2. 福建省自然科学基金面上项目, 2018J01094, 针对超球面空间上的高维方向数据的聚类分析, 2018/04-2021/04, 4万元。

  3. 国家自然科学基金青年项目,61502183,分层贝叶斯非参数模型的聚类方法,2016/01-2018/12,19万元。

  4. 华侨大学中青年教师科技创新资助计划,ZQN-PY510,基于方向混合模型的高维方向数据的聚类分析,2017/10-2021/09,40万元。

  5. 华侨大学高层次人才引进科研启动项目,600005-Z15Y0016,基于分层Pitman-Yor过程的高维数据聚类方法,2015/06-2017/05,10万元。


论文发表情况(部分):

一、学术著作章节:

  1. W. Fan and N. Bouguila, “Recognition and Clustering of Dirichlet Mixtures”, in Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc., 2015

  2. W. Fan and N. Bouguila, “Incremental Learning of an Infinite Beta-Liouville Mixture Model for Video Background Subtraction”, in Background Modeling and Foreground Detection for Video Surveillance, T. Bouwmans et al. (Eds.), Chapman and Hall/CRC, 2014.


二、国际期刊论文:

  1. W. Fan, N. Bouguila, J. Du, X. Liu: Axially Symmetric Data Clustering Through Dirichlet Process Mixture Models of Watson Distributions. IEEE Transactions on Neural Networks and Learning Systems. 30(6): 1683-1694, 2019

  2. W. Fan, N. Bouguila: Simultaneous clustering and feature selection via nonparametric Pitman-Yor process mixture models. International Journal of Machine Learning and Cybernetics, 10(10): 2753-2766, 2019

  3. W. Fan, C. Hu, J. Du, N. Bouguila: A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models. Neural Processing Letters 47(2): 619-639, 2018

  4. W. Fan, H. Sallay, N. Bouguila, “Online Learning of Hierarchical Pitman-Yor Process Mixture of Generalized Dirichlet Distributions with Feature Selection”, IEEE Transactions on Neural Networks and Learning Systems, Vol. 28 (9), pp. 2048-2061, 2017

  5. W. Fan, F. R. Al-Osaimi, N. Bouguila, J. Du: "Proportional Data Modeling via Entropy-Based Variational Bayes Learning of Mixture Models". Applied Intelligence. Vol. 47(2): pp.473-487, 2017

  6. W. Fan, H. Sallay, N. Bouguila and S. Bourouis, “Variational Learning of Hierarchical Infinite Generalized Dirichlet Mixture Models and Applications”, Soft Computing, Vol. 20, pp. 979-990, 2016

  7. W. Fan, H. Sallay, N. Bouguila and S. Bourouis, “A Hierarchical Dirichlet Process Mixture of Generalized Dirichlet Distributions for Feature Selection”, Computers & Electrical Engineering, Vol. 43, pp. 48-65,2015

  8. W. Fan and N. Bouguila, “Expectation Propagation Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions for Proportional Data Clustering”, Engineering Applications of Artificial Intelligence, Vol. 43, pp. 1-14, 2015

  9. W. Fan and N. Bouguila, “Online Variational Generalized Dirichlet Mixture Model with Feature Selection”, Neurocomputing, Vol. 126, pp. 166-179, 2014

  10. W. Fan and N.Bouguila, “Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions via Variational Inference”, IEEE Transactions on Neural Networks and Learning Systems, Vol. 24, No. 11, pp. 1850-1862, 2013

  11. W. Fan and N. Bouguila, “Non-Gaussian Data Clustering via Expectation Propagation Learning of Finite Dirichlet Mixture Models and Applications”, Neural Processing Letters, Vol. 39, pp. 115-135, 2014

  12. W. Fan and N. Bouguila, “Variational Learning of a Dirichlet Process of Generalized Dirichlet Distributions for Simultaneous Clustering and Feature Selection”, Pattern Recognition, Vol.46, No.10, pp. 2754-2769, 2013

  13. W. Fan, N.Bouguila and D. Ziou, “Unsupervised Feature Selection for High-Dimensional Non-Gaussian Data Clustering with Variational Inference”, IEEE Transactions on Knowledge and Data Engineering, Vol. 25, No. 7, pp. 1670-1685, 2013

  14. W. Fan and N. Bouguila, “Infinite Dirichlet Mixture Models Learning via Expectation Propagation”, Advances in Data Analysis and Classification, Vol. 7, No. 4, pp. 465-489, 2013

  15. W. Fan and N. Bouguila, “Variational Learning for Dirichlet Process Mixtures of Dirichlet Distributions and Applications”, Multimedia Tools and Applications, Vol. 70, No. 3, pp. 1685-1702, 2012

  16. W. Fan, N.Bouguila and D.Ziou, “Variational Learning for Finite Dirichlet Mixture Models and Applications”, IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, No. 5, pp. 762-774, 2012

  17. W. Fan and N. Bouguila, “Novel Approaches for Synthesizing Video Textures”, Expert Systems with Applications, Vol.39, No.1, pp. 828-839, 2012


三、国际学术会议论文:

  1. W. Fan, N. Bouguila and X. Liu, "A Hierarchical Dirichlet Process Mixture of GID Distributions with Feature Selection for Spatio-Temporal Video Modeling and Segmentation", 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2771-2775, New Orleans, LA, USA, 2017

  2. W. Fan, F. R. Al-Osaimi, N. Bouguila, J. Du, "Accelerated variational inference for Beta-Liouville mixture learning with application to 3D shapes recognition", International Conference on Control, Decision and Information Technologies (CoDIT), pp. 394-398, Saint Julian's, Malta, 2016

  3. W. Fan, F. R. Al-Osaimi, N. Bouguila, "A novel 3D Model Recognition Approach using Pitman-Yor Process Mixtures of Beta-Liouville Distributions", IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1986-1989, Montréal, QC, Canada, 2016

  4. W. Fan and N. Bouguila, "A Nonparametric Hierarchical Bayesian Model and Its Application on Multimodal Person Identity Verification", International Symposium on Visual Computing (ISVC), pp. 399-409, Las Vegas, NV, USA, 2016

  5. W. Fan and N. Bouguila, "Dynamic Textures Clustering Using a Hierarchical Pitman-Yor Process Mixture of Dirichlet Distributions”, Proc. of the IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, Sep. 2015.

  6. W. Fan, H. Sallay, N. Bouguila and J. Du, "3D Object Modeling and Recognition via Online Hierarchical Pitman-Yor Process Mixture Learning”, Proc. of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, Florida, USA, Dec. 2015.

  7. W. Fan and N. Bouguila, “Spatio-Temporal Object Recognition Using Variational Learning of An Infinite Statistical Model”, Proc. Of the 21st European Signal Processing Conference (EUSIPCO), Marrakech, Morocco, Sep. 2013

  8. W. Fan and N. Bouguila, “Unsupervised Feature Selection for Proportional Data Clustering Via Expectation Propagation”, Proc. Of the International Joint Conference on Neural Networks (IJCNN), Dallas, USA, Aug. 2013

  9. W. Fan and N. Bouguila, “Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering”, Proc.Of the 23rdInternational Joint Conference on Artificial Intelligence (IJCAI), pp.1323-1329, Beijing, China, Aug. 2013

  10. W. Fan and N. Bouguila, “Online Facial Expression Recognition Based on Finite Beta-Liouville Mixture Models”, Proc. Of the 10thConference on Computer and Robot Vision (CRV), pp. 37-44, Regina, Canada, May 2013

  11. W. Fan and N. Bouguila, “Online Learning of a Dirichlet Process Mixture of Generalized Dirichlet Distributions for Simultaneous Clustering and Localized Feature Selection”, Journal of Machine Learning Research - Proceedings Track 25: pp. 113-128, 2012

  12. W. Fan and N. Bouguila, “Nonparametric Localized Feature Selection via a Dirichlet Process Mixture of Generalized Dirichlet Distributions”. Proc. Of the 19thInternational Conference on Neural information processing (lCONlP), pp. 25-33, Doha, Qatar, Nov. 2012

  13. W. Fan and N. Bouguila, “A Variational Component Splitting Approach for Finite Generalized Dirichlet Mixture Models”. Proc. Of the International Conference on Communications and Information Technology (ICCIT), pp.53-57, Tunisia, Jun. 2012. [最佳论文奖]

  14. W. Fan and N. Bouguila, “Face Detection and Facial Expression Recognition Using A Novel Variational Statistical Framework”. Proc. Of the 5thInternational Conference on Multimedia, Communications, Services and Security (MCSS), pp. 95-106, Krakow, Poland, May 2012. [最佳论文奖]

  15. W. Fan, N. Bouguila and D.Ziou, “Unsupervised Anomaly Intrusion Detection via Localized Bayesian Feature Selection”. Proc. Of the 11th IEEE International Conference on Data Mining (ICDM), pp. 1032-1037, Vancouver, Canada, Dec. 2011

  16. W. Fan and N. Bouguila, “Online Video Textures Generation”. Proc. Of the 5thInternational Symposium on Visual Computing (ISVC), pp. 450-459, Las Vegas, USA, Nov. 2009



泉州校区地址:福建省泉州市丰泽区城华北路269号  邮编:362021
厦门校区地址:福建省厦门市集美区集美大道668号  邮编:361021