黄国钦
![]()
开通时间:..
最后更新时间:..
黄国钦,博士,教授,博士生导师,华侨大学制造工程研究院、机电及自动化学院副院长。2010年于华侨大学机械制造及自动化专业博士毕业后留校任教,2018年公派在英国哈德斯菲尔德大学精密技术中心进行为期一年的访学。为脆性材料加工技术科技部重点创新团队/教育部创新团队核心成员,ICAT国际磨料技术委员会青年委员,福建省机械工程学会理事/副秘书长、泉州市机械工程学会副理事长、《金刚石与磨料磨具工程》杂志编委等。主持国家重点研发计划课题1项,国家自然科学基金项目3项,福建省自然科学基金3项,参与项目多项。发表相关学术论文80余篇,获得授权发明专利40余件。以主要完成人获国家科技进步二等奖2项,福建省技术发明奖2项等科研奖励。获福建省青年科技奖、泉州市青年科技奖、福建省五四青年奖章、福建省五一劳动奖章。获包括福建省雏鹰计划青年拔尖人才等人才计划。
研究领域:
#高性能工具设计制备与应用 #脆性材料加工过程
#脆性材料高效精密加工技术 #增材制造技术与应用
#智能制造装备设计与开发 #低空经济
招生信息:
❏欢迎具备扎实的机械、材料、力学、控制或计算机学科基础,对解决高端制造中的实际科学问题与工程挑战充满热情,富有创新思维和团队协作精神的同学加入。
❏研究院拥有“脆性材料产品智能制造技术”国家地方联合工程研究中心、高性能工具全国重点实验室(共建)及教育部工程研究中心等国家级科研平台,对高性能工具设计制备、脆性材料高效精密加工等领域拥有深厚的研究基础,能够实现研究能力的飞跃与科研成果的充分转化。
❏重点研究面向陶瓷、金刚石、硬脆性难加工材料的增材制造创新型刀具/磨具设计方法,实现工具宏观形貌与微观结构的一体化、定制化制备。
学习工作经历:
1999.09 - 2003.07 本科 华侨大学 机械制造设计及其自动化
2003.09 - 2006.07 硕士 华侨大学 机械制造及其自动化
2006.09 - 2010.01 博士 华侨大学 机械制造及其自动化
2010.03 - 2019.12 华侨大学制造工程研究院 讲师、副教授,硕士生导师
2020.01 - 至今 教授 华侨大学制造工程研究院 教授,博士生导师,副院长
主要科研、教学获奖:
❏磨粒切厚分布特征约束的单层金刚石工具设计制备与应用 福建省科学技术发明奖,一等奖。
❏金属结合剂牢固把持金刚石磨粒的关键技术及应用 福建省科学技术发明奖,一等奖。
❏石材高效加工用金刚石磨粒工具关键技术及应 国家科学技术进步奖,二等奖。
❏会通中外,并育德才:”一带一路”工程技术人才培养模式创新与实践 福建省教学成果奖特等奖。
❏机械工程学科“校企深度融合”研究生培养体系改革与实践”,福建省教学成果奖 一等奖。
❏福建省运盛青年科技奖运盛青年科技奖,2021福建省运盛青年基金会。
主要科研项目:
❏国家重点研发计划,磨削类超硬材料制品增材制造工艺及应用示范(2021YFB3701803),2021-2025(主持)
❏福建省雏鹰计划——青年拔尖人才项目,2021-2025(主持)
❏福建省工业引导性(重点)项目,结构多层化金刚石结块的设计方法与设备技术研究,2020-2023(主持)
❏福建省高校青年拔尖人才计划项目,2018-2021(主持)
❏国家自然科学基金面上项目,占位原理与武火温控策略协同制备细粒度钎焊金刚石工具新技术研究,2010-2023(主持)
代表文章:
[1] Cao D, Zheng Z K, Zheng G, Huang G*, et al. Multi-level feature-based cross-domain SOH prediction for lithium-ion batteries with dual-stage loss[J]. Electric Power Systems Research, 2026, 253: 112550.
[2] Yang H, Huang G*, Xu Y, et al. Simulation of temperature on the wettability behavior of diamond/Cu-based filler alloys during brazing process[J]. Journal of Materials Research and Technology, 2025.
[3] Zhou J, Huang G*, Zhuang K, et al. Investigation of suppressing diamond displacement during brazing by adding 304L stainless steel particles into Ni-Cr-P alloys[J]. International Journal of Refractory Metals and Hard Materials, 2025: 107534.
[4] Chen Z, Huang G*, Wang J, et al. Additive manufacturing diamond plate for lapping sapphire: Fabrication, conditioning and lapping performance[J]. Journal of Manufacturing Processes, 2026, 157: 939-951.
[5] Wang J, Huang G*, Xu Y, et al. Additive manufacturing of structured grinding wheels with a composite of Cu38Ni34Fe13Sn10Ti5 high-entropy alloy and Ni/Ti dual-coated diamonds: Interfacial characteristics, mechanical properties and grinding performance[J]. International Journal of Refractory Metals and Hard Materials, 2025: 107360.
[6] Hong M, Huang G*, Fan H, et al. Investigation of Additive-Manufactured Spiral Textured Grinding Wheel (TGW) for Grinding of Zirconia Ceramics[J]. Ceramics International, 2025.
[7] Wang J, Huang G*, Zhuang C, et al. Fabricating diamond bit by selective laser melting and its drilling performance evaluation[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2025, 239(10): 1421-1433.
[8] Cao D, Chen M, Zheng G ,Huang G*,, et al. Optimizing wind turbine early fault identification: a multi-sensor approach with an enhanced DBSCAN algorithm[J]. Engineering Research Express, 2025, 7(2): 025512.
[9] Xing B, Huang G*, Wu L, et al. Study on ultrasonic-assisted lapping performance and material removal behavior of diamond/SiC composites[J]. Diamond and Related Materials, 2025, 151: 111767.
[10] Zhang J, Huang G*, Xu Y, et al. Dynamic simulation of powder spreading processes toward the fabrication of metal-matrix diamond composites in selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106500.
[11] Xing B, Zhang Y, Zhao J, et al. Investigation of the fabrication of diamond/SiC composites using α-Si3N4/Si infiltration[J]. Materials, 2023, 16(18): 6252.
[12] Huang G*, Yingda W, Zhang M, et al. Brazing diamond grits onto AA7075 aluminium alloy substrate with Ag–Cu–Ti filler alloy by laser heating[J]. Chinese Journal of Aeronautics, 2021, 34(6): 67-78.
[13] Liu Q, Huang G*, Xu Y. Investigation of drilling 2D C f/C–SiC composites with brazed diamond core drills[J]. Mechanical Sciences, 2020, 11(2): 349-356.
[14] Liu Q, Huang G*, Cui C, et al. Investigation of grinding mechanism of a 2D Cf/C–SiC composite by single-grain scratching[J]. Ceramics International, 2019, 45(10): 13422-13430.
[15] Wang Y, Huang G*, Su Y, et al. Numerical analysis of the effects of pulsed laser spot heating parameters on brazing of diamond tools[J]. Metals, 2019, 9(5): 612.
[16] Chen X, Huang G*, Tan Y, et al. Model establishment of a co-based metal matrix with additives of wc and ni by discrete element method[J]. Materials, 2018, 11(11): 2319.
[17] Huang G*, Huang J, Zhang M, et al. Fundamental aspects of ultrasonic assisted induction brazing of diamond onto 1045 steel[J]. Journal of Materials Processing Technology, 2018, 260: 123-136.
[18] Huang G*, Zhang M, Huang H, et al. Estimation of power consumption in the circular sawing of stone based on tangential force distribution[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1249-1261.
[19] Huang G*, Yu K, Zhang M, et al. Grinding characteristics of aluminium alloy 4032 with a brazed diamond wheel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9): 4573-4581.
[20] Huang G*, Zhang M, Guo H, et al. The effects of temperature curves on the diamond/Ni-Cr interfacial properties in high-frequency induction brazing[J]. International Journal of Abrasive Technology, 2017, 8(2): 133-146.
[21] Liu Q, Huang G*, Fang C, et al. Experimental investigations on grinding characteristics and removal mechanisms of 2D–Cf/C-SiC composites based on reinforced fiber orientations[J]. Ceramics international, 2017, 43(17): 15266-15274.
[22] Liu Q, Huang G*, Xu X, et al. A study on the surface grinding of 2D C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5): 1595-1603.
[23] Huang G*, Huang H, Guo H, et al. Wear of Monolayer Brazed Diamond Beads in Wire Sawing of Granite[C]//Materials Science Forum. Trans Tech Publications Ltd, 2016, 874: 205-209.
授权发明专利:
[1]黄国钦,马小军,卢平,一种具有切口低感染的菠萝采摘器,ZL201711425362.5
[2]黄国钦,黄有志,崔长彩,尹方辰,徐仰立,徐西鹏,一种防偏磨的金刚石绳锯,ZL202110276735.7
[3]黄国钦,邢波,徐西鹏,一种制备Diamond/SiC复合材料的方法,ZL202110791110.4
[4]黄国钦,黄有志,崔长彩,黄辉,徐仰立,徐西鹏,一种细直径金刚石串珠的制备方法及涂敷设备,ZL202110276710.7
[5]黄国钦,黄有志,崔长彩,黄辉,徐仰立,徐西鹏 ,金刚石绳锯串珠钎料及金刚石自动化涂敷设备,ZL202110275203.1
[6]黄国钦,崔长彩,尹方辰,方从富,黄辉,徐西鹏,一种磨粒参数化排布锯片的磨粒参数优选设计方法,ZL201810046403.8
[7]黄国钦,石晓鹏,陈世隐,郭佳杰,黄辉,郭桦,徐西鹏,超声波辅助感应加热制备钎焊磨粒工具的装置的使用方法,ZL201610367138.4
[8]黄国钦,陈世隐,余凯峰,穆德魁,黄辉,郭桦,徐西鹏,一种单层磨粒砂轮的制作方法及制作装置,ZL201610507470.6
[9]黄国钦,郭佳杰,王颖达,黄辉,郭桦,徐西鹏,一种基于激光预熔覆制作磨料图案排布钎焊磨轮的方法,ZL201610755335.3
[10]黄国钦,陈世隐,徐西鹏,一种砂轮径向跳动在位测量方法及装置,ZL201610129826.7
[11]黄国钦,石晓鹏,黄辉,郭桦,徐西鹏,一种超声波辅助活性连接制备超硬磨粒工具的方法,ZL201610365045.8
[12]黄国钦,徐西鹏,郭桦,黄辉,姜峰,稀土改性钨基结合剂金刚石圆锯片及其制造方法,ZL201410355311.X
[13]黄国钦,李远,黄辉,郭桦,徐西鹏,大切深磨削加工磨轮工件接触弧区力载荷分布测量方法,ZL201410185864.5
[14]一种高温硬度增强的钛基复合材料的制备方法,ZL202310385594.1
[15]一种明暗场和白光干涉的缺陷检测系统和检测方法,ZL202310732581.7
[16]一种多道激光的原位热处理方法,ZL202310891422.1
[17]切入式磨削理论模型仿真预测方法,ZL202111675195.6
[18]耐高温、高硬度复合粉末及制备方法和在激光增材制造的应用,ZL202211647538.2
[19]一种共晶陶瓷颗粒增强钛基复合材料及其制备方法、3D激光打印方法,ZL202310012630.X
[20]一种立体石雕的薄壁部位加工工艺,ZL202210609100.9
[21]激光熔化成形多面体金刚石复材熔凝流动预测方法及装置,ZL202311206730.2
[22]一种工业机器人刚度测量气动加载外力装置,ZL202011204460.8
[23]一种带背光照明的衬底缺陷检测用回转工作台,ZL201811087515.4
[24]陶瓷结合剂细粒度金刚石蜂窝磨块的激光固化成形方法,ZL202311211788.6
[25]3D打印复材的控温及性能强化方法、装置、设备及介质,ZL202311118925.1
[26]一种立体石雕开粗加工方法,ZL202210570042.3
[27]一种基于3D打印的金刚石多孔研磨块的制造方法及应用,ZL202210856780.4
[28]一种单晶金刚石衬底光学常数测量方法,ZL202011296318.0
[29]激光诱导活性离子刻蚀金刚石的加工装置及加工方法,ZL202111675170.6
[30]垂直扫描白光干涉谱辅助穆勒矩阵椭偏测量系统及方法,ZL202210374730.2
[31]一种多层膜厚度及光学特性检测方法,ZL202011296374.4
[32]一种金刚石薄膜厚度及光学常数检测方法,ZL202011296380.X
[33]一种基于磨粒切厚分布约束的磨削用量设计方法,ZL201810045283.X
[34]一种基于线阵相机的在位砂轮快速全场检测方法及系统,ZL201810090720.X
[35]一种基于磨粒切厚分布受控的砂轮修整量优选设计方法,ZL201810046401.9
[36]一种磨粒切厚分布求解方法及其在磨削工艺设计上的使用方法,ZL201810045929.4
[37]一种金刚石线锯整周三维表面形貌检测方法及其检测装置,ZL201810089178.6
[38]一种机器人雕刻加工立体异型石材的方法及系统,ZL201810297301.3
[39]一种磨粒三维可控排布磨具的制备装置及其方法,ZL201610365293.2
[40]一种具有大容屑腔的磨块、其制备方法及应用,ZL201510220450.6
[41]稀土改性钨基结合剂金刚石磨盘及其制造方法,ZL201410355288.4
[42]一种全液态活性合金连接制作磨粒磨具的方法,ZL201010610895.2
[43]用于研究熔融态合金滴落体与磨粒接触界面行为的装置,CN201110380554.5
[44]一种超硬磨粒工具微刃的生成方法,CN201110094198.0
[45]一种增强烧结金刚石结块中磨粒把持强度的方法,CN200810071901.4
邮编 :
通讯/办公地址 :
邮箱 :