• 其他栏目

    许斌

    • 教授 博士生导师 硕士生导师
    • 主要任职:Director and Founder, Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province
    • 性别:男
    • 出生日期:1972-03-04
    • 毕业院校:Ibaraki University
    • 学历:博士研究生
    • 学位:工学博士学位
    • 入职时间:2016-08-01
    • 所在单位:土木工程学院土木工程系
    • 办公地点:College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, China
    • 电子邮箱:
    • 在职信息:在岗
    • 其他任职:Director and Founder, International Research Center for Safety and Sustainability of Civil Engineering
    • 职务:Director, Key Laboratory
    • 学科:土木工程
    • 2008当选:教育部新世纪优秀人才支持计划
    • 2016当选:桐江学者
    • 2017当选:福建省“闽江学者奖励计划”特聘教授
    • 2017当选:厦门市双百计划
    • 2018当选:福建省引进高层次人才
    • 2024-09-10曾获荣誉当选:华侨大学师德模范
    • 福建省引进高层次人才(海外B类)
    • 福建省技术发明奖,2018
    • 厦门市双百计划创新人才,2017
    • 湖南大学师德标兵,2014

    访问量:

    开通时间:..

    最后更新时间:..

    Multi-Physics Mesoscale Substructure Analysis on Stress Wave Measurement within CFST-PZT Coupling Models for Interface Debonding Detection

    点击次数:

    发表刊物:Sensors

    摘要:In recent years, the development of interface debonding defect detection methods for concrete-filled steel tubes (CFSTs) using stress wave measurement with piezoelectric-lead-zirconate-titanate (PZT) actuator and sensor has received significant attention. Because the concrete core in CFSTs is a heterogeneous material with randomness at the mesoscale, the size, position and distribution of aggregates unavoidably affect the stress wave propagation and the PZT sensor response. In this study, to efficiently investigate the influence of the mesoscale structure of the concrete core of CFSTs on the response of embedded PZT sensors, a multi-physics substructure model of CFST members coupled with a PZT actuator and a PZT sensor, where a single circular aggregate with different size and position and randomly distributed circular aggregates are considered, are established first. Then, multi-physics simulations on the effect of the local mesoscale structure of the concrete core on the response of the embedded PZT sensor excited by both a sinusoidal signal and sweep frequency signal are carried out. Moreover, corresponding multi-physics and mesoscale simulations on the embedded PZT sensor response of substructures with different interface debonding defects are also carried out for comparison. The amplitude and the wavelet packet energy of the embedded PZT sensor response of each mesoscale substructure are employed to distinguish the influence of the concrete core mesoscale structure and interface debonding defect on sensor measurement. The findings from the results with the multi-physics coupling substructure models are compared with those of the full CFST-PZT coupling models and the tested members of the previous studies to verify the rationality of the embedded PZT sensors measurement of the established substructure models. Results from this study show that the effect of interface debonding defect on the amplitude and the wavelet packet energy of the embedded PZT sensor measurement of the CFST members is dominant compared with the mesoscale heterogeneity and randomness of the concrete core.

    论文类型:期刊论文

    文献类型:J

    卷号:22

    期号:3

    页面范围:1039

    是否译文:

    发表时间:2022-03-02

    收录刊物:SCI

    影响因子:3.847

    第一作者:王江

    合写作者:陈洪兵,葛汉彬

    通讯作者:许斌