• 其他栏目

    许斌

    • 教授 博士生导师 硕士生导师
    • 主要任职:Director and Founder, Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province
    • 性别:男
    • 出生日期:1972-03-04
    • 毕业院校:Ibaraki University
    • 学历:博士研究生
    • 学位:工学博士学位
    • 入职时间:2016-08-01
    • 所在单位:土木工程学院土木工程系
    • 办公地点:College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, China
    • 电子邮箱:
    • 在职信息:在岗
    • 其他任职:Director and Founder, International Research Center for Safety and Sustainability of Civil Engineering
    • 职务:Director, Key Laboratory
    • 学科:土木工程
    • 2008当选:教育部“新世纪优秀人才支持计划”入选者
    • 2008当选:教育部新世纪优秀人才支持计划
    • 2016当选:桐江学者
    • 2017当选:福建省“闽江学者奖励计划”特聘教授
    • 2017当选:厦门市双百计划
    • 2017当选:福建省闽江学者-特聘教授
    • 2018当选:福建省引进高层次人才
    • 福建省引进高层次人才(海外B类)

    访问量:

    开通时间:..

    最后更新时间:..

    Hybrid wind turbine towers optimization with a parallel updated particle swarm algorithm

    点击次数:

    发表刊物:Applied Sciences

    关键字:The prestressed concrete–steel hybrid (PCSH) wind turbine tower, characterized by replacing the lower part of the traditional full-height steel tube wind turbine tower with a prestressed concrete (PC) segment, provides a potential alterative solution to transport difficulties and risks associated with traditional steel towers in mountainous areas. This paper proposes an optimization approach with a parallel updated particle swarm optimization (PUPSO) algorithm which aims at minimizing the objective function of the levelized cost of energy (LCOE) of the PCSH wind turbine towers in a life cycle perspective which represents the direct investments, labor costs, machinery costs, and the maintenance costs. Based on the constraints required by relevant specifications and industry standards, the geometry of a PCSH wind turbine tower for a 2 MW wind turbine is optimized using the proposed approach. The dimensions of the PCSH wind turbine tower are treated as optimization variables in the PUPSO algorithm. Results show that the optimized PCSH wind turbine tower can be an economic alternative for wind farms with lower LCOE requirements. In addition, compared with the traditional particle swarm optimization (PSO) algorithm and UPSO algorithm, the proposed PUPSO algorithm can enhance the optimization computation efficiency by about 60–110%.

    论文类型:期刊论文

    文献类型:J

    卷号:11

    期号:18

    页面范围:8683

    是否译文:

    发表时间:2021-09-17

    收录刊物:SCI

    影响因子:2.838

    第一作者:李泽宇

    合写作者:陈洪兵,许斌,葛汉彬