Syed Humayun Basha

Doctoral Degree in Engineering

博士研究生

Personal Information

副研究员(自然科学) Supervisor of Master's Candidates

  • Academic Titles:Dr
  • Gender:Male
  • Date of Birth:1987-03-19
  • Alma Mater:印度理工学院
  • Education Level:博士研究生
  • Degree:Doctoral Degree in Engineering
  • Date of Employment:2020-07-01
  • School/Department:华侨大学
  • Business Address:华侨大学土木工程学院学科实验大楼419
  • E-Mail:
  • Status:在岗
  • Administrative Position:Associate Professor (Research)
  • Discipline:Structural Engineering
  • VIEW MORE

    Other Contact Information

    ZipCode :

    PostalAddress :

    Email :


    Home > Scientific Research > Paper Publications

    Jiang, Y. F, Guo, Z., Basha, S. H., and Chai, Z. L. Sliding bed joint for seismic response control of ashlar stone masonry structures

    Release time:2023-02-13 Hits:

    Journal:Engineering Structures, Elsevier
    Abstract:An isolation technique using sliding bed joint for seismic response control of ashlar stone masonry buildings was developed and investigated in this paper. Eight triplet specimens were tested under cyclic loads to identify suitable interface material for the sliding bed joint. Further, four stone masonry wall specimens were tested to investigate the frictional performance of the sliding bed joint. The sliding friction coefficient of stainless steel plate-stainless steel plate interface was about 0.17 and found to be insensitive to sliding displacement and the level of compressive stress. The proposed interface was found suitable for the sliding bed joint application. Stable frictional performance of sliding bed joint in practical engineering buildings could be achieved by leveling the interface of each group of the discrete distribute steel plates (two pairs of steel plates equidistantly adhesive on one stone block). A two-degrees-of-freedom mathematical model was adopted to investigate the isolation performance of stone structure's sliding bed joint. No sliding displacement was observed in the isolated stone structures in the case of frequent level earthquake. On the other hand, the average absolute acceleration response in the case of design and rare level earthquakes was significantly reduced compared to fixed base structures. The maximum average sliding displacement of isolated stone structures considered was about 71 mm which is within the half-length of the steel plate. Simple expressions were proposed to predict the average absolute acceleration spectrum of isolated stone structures. The experimental and analytical results provided reference for the application of the sliding bed joint in the stone masonry buildings.
    Indexed by:Journal paper
    Discipline:Engineering
    First-Level Discipline:Civil Engineering
    Document Type:J
    Volume:244
    Page Number:112734
    Translation or Not:yes
    Date of Publication:2021-06-25
    Included Journals:SCI
    DOI number:10.1016/j.engstruct.2021.112734
    Links to published journals:https://www.sciencedirect.com/science/article/pii/S0141029621008841